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In this paper a noniterative algorithm to be used for the ana-
lytical determination of the sorted eigenvalues and corresponding
orthonormalized eigenvectors obtained by diffusion tensor mag-
netic resonance imaging (DT-MRI) is described. The algorithm
uses the three invariants of the raw water spin self-diffusion tensor
represented by a 3 x 3 positive definite matrix and certain math
functions that do not require iteration. The implementation re-
quires a positive definite mask to preserve the physical meaning
of the eigenvalues. This algorithm can increase the speed of eigen-
value/eigenvector calculations by a factor of 5-40 over standard
iterative Jacobi or singular-value decomposition techniques.
This approach may accelerate the computation of eigenvalues,
eigenvalue-dependent metrics, and eigenvectors especially when
having high-resolution measurements with large numbers of slices
and large fields of view. © 2001 Academic Press

Key Words: analytical; diffusion tensor; eigenvalues; eigenvec-
tors.

INTRODUCTION

These methods are usually iterative and, hence, time consul
ing, especially when performed using interpreted processin
languages such as MATLAB or IDL on a voxel-by-voxel ba-
sis. The iterative schemes commonly used for symmetric matri
diagonalization include variations of the Jacobi methttj or
singular-value decomposition (SVD)-based methdds (9.

In this paper, we examine an analytical method for calculatin
eigenvalues, eigenvalue-dependent measures, and eigenvec
of the diffusion tensor directly from the diffusion tensor ele-
ments. The efficiency and accuracy of this approach relative 1
commonly used iterative methods are also investigated.

BACKGROUND AND THEORY

Diffusion Tensor Invariants

The Cartesian diffusion tens@ has three principal invari-
ants,{l1, I, I3}, which are related to the eigenvalu¢s}, and
defined by the characteristic equation

det© — AUszys) = (A — 21) (A — 22)(A — A3)

A diffusion tensor measurement may be obtained by applying
diffusion sensitizing gradient pulses along a minimum of six
noncolinear gradient directions for a set diffusion time, gradient
strength, and pulse separatida-§). The relationship between whereUs, 5 is the 3x 3 identity matrix. From this equation, the
the measured diffusion tensbrin the scanner frame and thethree invariants are given by,(14
local tissue frame is given by the matrix equation

=23 =A%+ Al —13=0, 2]

I, = TraceD) = Dyx + Dyy + Dyz=A1+ A2+ A3 [3]
DE = EA. 1
[ ] I2 = (Dxnyy+ DxxDzz+ Dnyzz) - (D)%y + D)%Z—F Dgz)
In Eq. [1] the self-diffusion tensor eigenvalues are the diagonal — » ;. 1 3133 + Ao2s [4]

elements of the matriA andE is an orthogonal rotation matrix
whose columns are the eigenvectds of D. There are many gng
useful quantities that can be obtained from the self-diffusion ten-
sorincluding the trace, measures of diffusion anisotropy, and ori-
entation 4-6). For many of these calculations, the eigenvalues
and eigenvectors must be computed first. For example, in fiber-
tracking applications the accurate determination of the princi
eigenvector directions for a large volume is requirédl(.

The diffusion tensor matrix can be diagonalized using tradi- The three principal tensor invariants can be used to expre:
tional methods of eigenvector—eigenvalue decompositidh ( several anisotropy measures such as relative anisotfg®y (

;

|3 = det@) = Dxx Dnyzz“f‘ 2nyszDyz
— (Dz:D%, + DyyDZ, + DxxD3,) = A1rohs.  [5]
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and fractional anisotropy2]. However, for other measures of The sorted eigenvaluess( > 1, > A3) may now be expressed
tensor anisotropy there is no obvious expression for direct ang:
Iytical calculation from either the diffusion tensor or its invari-

ants. Fpr gxampl_e, pIanar and spherical shape _meaﬁ)rmsd a = 11/3+ 2J/v cosp) [12]
the cylindrical anisotropy inde)8f are expressed in terms of the
sorted eigenvalues. The analytical solutions for these measures, A2 = 11/3—2J/vcosfr/3+ ¢) [13]

interms of either the tensor elements or the three principal tensor

rotational invariants, have not been reported. Consequently, Hrel

diffusion tensor must be fully diagonalized prior to calculating

these measures. As pointed out in the Introduction, the diagonal- A3 = 11/3 — 2/vcosfr/3 — ). [14]
ization can take significant amounts of time and mask the depen-

dency between the measures and the original diffusion tensqgyte that the eigenvalues need no further sorting due to th

cosine function and the fact that® ¢ < 7/3 is assured for
a positive-definite DT matrix. The third eigenvalue can also be
The analytical diagonalization solution presented here is sgtained using the trace invariance propetty= Iy — A1 — A2.
cific to the positive-definite and symmetric Cartesian tensofsdiscussion of the geometric interpretation of this analytical
that are commonly encountered in many applications includitégggonalization and application to tensor anisotropy is given ir
diffusion, crystallography, chemical shielding, and continuuithe Appendix.
mechanics. Descriptions of analytical eigenvalue calculationspetermination of the eigenvectorsAfter the sorted
have been previously documentetdl{ 13, 13. By using the ejgenvalues have been computed, thikh eigenvector,
three principal invariantfl, |2, Is} of D defined above, the fol- 5 —[g, ey @], may be calculated by solving the linear sys-
lowing steps lead to the diagonalizationf In addition, we tem of equationsP@ = &, for the ratioe, : ey : &z. More-
will obtain an orthonormal eigenvector st that solves Eq. [1]. over, the normalization conditiod’& = 1, can be enforced to
Determination of the eigenvaluesThe following rotation- determined (16). Note that since-§ is also a solution to the

The Analytical Diagonalization Algorithm

ally invariant variables are defined in terms{éf, 1, I3}: eigenvector problerd(—&) = 1,(—§&), a sign ambiguity in the
vector direction is unavoidable.
v=(11/3)*>—1,/3 [6] The calculation of the orthonormalized eigenvectors proceed
as follows: for thath eigenvalue, define the variables
and
(11/3)° = l112/6 + 13/2 [7] AT Do B BT B B e B B
s= — + .
1/ l2/ o/ €x = (DxyDyz — B Dxz)(DxzDy; — Cj Dy) [16]
Since for real eigenvalues,> 0 ands? < v3, we define &y = (DxzDy; — Ci Dxy)(DxzDxy — A Dy2) [17]

¢ [8]

acos, 1)
B
€z = (DxyDyz — Bi Dxz)(DxzDxy — Ai Dy3). (18]

It should be noted that botlhands variables are related to the
second and third rotational invariants of the diffusion deviatorithe normalized eigenvector corresponding.itds
tensor,Dyp, With zero trace or first invariandy:

" €

&= :

Dan= D — 11/3Usxs. [°] G\ITQ

[19]

Thus, we can interprat ands as variance and skewness mearig procedure may be repeated as desired ferl, 2, or 3 to

sures ofDan respectively, obtain the orthonormalized set of eigenvectors that correspor
to the major, medium, and minor eigenvalues. Note that the thir
eigenvector may be obtained more efficiently by the cross proc
uct between the other two orthonormal eigenvect®randé,

v = %Traqugn) = Variance{) = [2(Dan)/3 [10]
and

s = § TracqD3) = Skewness() = l3(Dar)/2 & = [ery€r — BBl €162 — E1xErr E1xEry — EryEi]
= detDan)/2. [11] [20]
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Implementation and algorithm sensitivity issue3he alge- to examine the sensitivity of the eigenvector and eigenvalue st
braic algorithm presented above can easily be implementedlotions as provided by the analytical approach. The total numnr
an entire image volume array. The use of standard math librdogr of imagesN; = 134, was patrtitioned into reference images
functions (cos, acos, sqrt, etc.) is the only requirement. Thereois Nes = 8, with encoding directionsN. =6, each averaged
no need to sort the computed eigenvalues as is generally ddhe= 21 times. The echo time, TE; repetition time, TR; diffu-
when using traditional iterative methods. It is highly advisabl&on pulse durationj; and separation), are TEHTR/§/A =
to enforce a nonnegative-definite real eigenvalue mask bef@2/5500/16/23 ms, with slice thickness 5 mm. The gradient
obtaining the eigenvectors. Prior to eigenvalue determinatigtrengthG, was tuned to achieve a diffusibrfactor of approx-
the positive-definite mask can be selected to include all voxéfsately 500 s mm?.
that satisfy the necessary and sufficient conditions that assur€or both the brain and water imaging studies, the eigenva

the convexity of the diffusion ellipsoid (17): ues and eigenvectors were calculated using three diagonaliz
tion methods: (1) the conventional iterative Jacobi-QL (J-QL)
I3 >0, and (Dn andD;; Dj; — DIZJ) >0 method {6), (2) singular-value decomposition, and (3) the an-

alytical method described in Egs. [12]-[14] and [15]-[18]. All
diagonalization methods used the same positive-definite ma:

e . efined by Egs. [21].
Diffusion measurements usually have some random nmsetHat y Eags. [21]

makes the tissue water diffusivities unique and rarely equal, even
for a water phantom, as will be demonstrated experimentally.
Additionally, the enforcement of this positive-definite mask a%:omputational Efficiency
sures that

fori, j =x,y,orz [21]
RESULTS

The analytical algorithm was implemented on a UNIX work-

(A1, A2, andig) > O, [22] station (Sun4-Sol2@360 MHz Sparcv9 processor) in the C prc

gramming language. The results given by the analytical algc

which will reduce the chance of division by 0 in Eq. [19] aboveithm Egs. [12]-{20] were compared with those obtained usin

The mask will remove air and very-low-signal regions. Notie eigen decomposition routine (qr.c, jacobi.c, and svdcmp.c)
also that this mask will not remove a voxel with degeneratdlumerical Recipesin C"11). The (qr.c) routine was optimized

eigenvalues. This case corresponds te 0 in Eq. [10] and is for symmetric matrices. The analytical code gave a rough con

extremely rare even at the highest available SNR on an isotroPl&aﬂona' advantage factor of 5 over the gr.c algorithm (8 vs 44 <
water phantom. or a total number ofN =1,000,000 of randomly generated

positive definite 3x 3 matrices.

MATERIALS AND METHODS The analytical algorithm was also implemented using
MATLAB-r11 (Mathworks, Inc., Natick, MA, version 5.3) and
DT-MRI Experiments IDL (Research Systems, Inc., Boulder, CO, version 5.3) lan

e . . uages on the same workstation for a 22828 x 6 diffu-
Diffusion tensor image me_asurem_ents were ob_talned frogn)n array. For MATLAB with double-precision computation,
a normal human subject using a single-shot spin-echo Plfe proposed analytical approach provided the positive-definit

pgred E:Dllzlpulge sgqu‘Jeer;:/%\c/).n a dl.'S'T SIGN_A MRI szgn hsk array, three eigenvalue and eigenvector arrays in less th
(General Electric) wit | gradients (maximum gra '8N 4 s versus 15.8 s using the iterative voxel-by-voxel built-ir

amplitude= 4 G/cm). Informed consent was obtained as per t Sutine, eig.m, and 12 s for the svd.m routine. For IDL, the re:

gl.{{'ge.“nes of thte_lristggonall ZR;ewew Boarq. Sdlng_lte;]a;(g\llzsllce&lts were 0.5 s using the analytical algorithm versus 2.8 s usir
with Image matrix= X were acquired wi the eigengl.pro code. Hence, the computation time advantag

.24 cm. The toFaI number of imagel; = 55, was partitioned factor on the whole image array is approximately 30—40 usin
into reference images ®er = 7 (0 = 0), andN. = 6 encoding 1| AR, and 6 using IDL with the quoted routines.

directions, each averagéj = 8times (N; = Nes+NeNg). The

echo time, TE; repetition time, TR; diffusion pulse duratién,

and separatiomy, are TE/TR8/A = 94/2000/23/29 ms, with

slice thickness= 4 mm. The diffusion weighting-factor is ~ Maps of the relative eigenvalue differences

b = 1341 s mm?. The diffusion tensor encoding scheme used

six noncolinear directions of the scaled icosahedron (Icosa6) |Ai — Aal/Ai (23]

(18,19 onaunitsphere (i.e{Gx, Gy, Gz} = Gmax/v 12+ 1 x

{[t 10],[r -10],[01<],[0r —1],[1 = O0],and[-1 O 7]}, between the analytical and the iterative (J-QL method) calcule

wherer = (v/5 — 1)/2 andGmay = 4 G/cm. tions were computed (not shown). These maps showed that t
Water phantom measurements were also acquired using ¢figenvalue calculation does not appear to depend significant

icosahedral encoding scheme, at a higher signal-to-noise ratin, the method of computation. One interesting observatio

Brain Water Self-Diffusion Imaging
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is that the relative difference is lowest for regions of highlyoxel in the CSF and corresponded to the largest ERR valu
anisotropic white matter. However, for more isotropic regiorfer all methods. All other image voxels had errors at least twc
the largest relative difference is on the order of 50~ which  orders of magnitude lower. In general, the SVD method ap
is negligible for practical considerations. This difference magyears most accurate, followed by the J-QL method, and the ar
be attributed to the lower stability of the eigenvalue deconadytical method was the least accurate. It should be noted th:
position for less anisotropic regions, such as in gray matteoth iterative techniques (SVD and J-QL) use a convergenc
(GM) and the cerebrospinal fluid (CSF). In white matter (WM)griterion similar to Eq. (24). Despite a difference in the calcu-
the noise/sorting bias fok; is less severe than in isotropiclated errors on the order of four to six orders of magnitude
regions. the overall relative error for all methods is negligible for most
The analytical and iterative calculations of the eigenvectoapplications.
were also compared. A map of the absolute dot prodi&s,,
was identical to the binary positive definite mask, which inAqueous Phantom Diffusion Tensor Imaging

dicates that the analytical approach provides the same set 0'f'he brain imaging results demonstrated that error associate

directions as the iterative approach. . ... with tensor feature estimates is greatest in primarily isotropi
Another way to evaluate the accuracy of the diagonalization |

to compute the difference between the original measured tenr %?ions. Therefore, an aqueous solution phantom, which hz
dat pd the t tructed f th 9 ted ei Es tropic diffusion properties, should also demonstrate signifi
ataandthe tensor constructed from the computed €I9envVeCtry, o . gifferences between the techniques. The error meast
and eigenvalues. This approach may be used to determine thc g. [24] was applied to calculations of eigenvalues and eiger

thod is most accurate for these calculations. A measure of tlg! | : ; .
g:(raor norm (ERR) is defined as V&%tors for the water phantom imaging studies. The results ar
shownin Fig. 2. The displayed gray levels have been scaled. Tt

true maximum values are roughly5lx 1016, 2.5 x 10716, and

ERR = V14(EAE" — D) [24] 1078, for the SVD, J-QL, and analytical techniques respectively
/14(DTrue) ’ Again, the SVD appears most accurate, although the relative e

ror for all the calculation methods is practically negligible. The
whereDrye is the measured diffusion tensér,and A are the analytical technique depicts a centered dark horizontal stripe o
estimated eigenvector and eigenvalue matritgss a fourth the error map, which was puzzling at first. Closer investigatior
invariant (14), of the image data showed a low amplitude zipper artifact in this
region that may have yielded a small, yet artificial increase ir

|, = TraceQP?) = D}, + D7, + DZ,+2(D%, + D, + D,)  the anisotropy.

Relative eigenvalue difference (Eq. [23]) and eigenvector dot
product maps were also generated (not shown), which con
pared the eigenvalue and eigenvector results for the J-QL ar
Figure 1 maps this error quantity for the SVD, J-QL, and analyfine Analytical methods. The maximum relative eigenvalue dif-
cal calculation methods. The error for the analytical approach ggrence was on the order of 1¥. The absolute eigenvector dot
pears lowest for regions with high anisotropy (white matter). TH¥oduct was also unity everywhere within the phantom. Note
ranges for these maps were scaled for display. The actual m#at for the ideal degenerate (isotropic) diffusion tensor, any
imum error was roughly D x 10715, 3.0x 10715, and 25 x  orthonormal vector is a valid solution. The stability of the al-
1079, for the iterative SVD, the J-QL, and the analytical method#orithm is explained in part by the fact that the likelihood of
respectively. Note that the analytical error occurred for a singi@countering a degenerate case is very small in the presence
voxel at this level. This voxel corresponded to a nearly isotropi®ise.

=12 2l,. [25]

x107"° T %102
. 25
2
10 15
i
5
0.5
0 0

FIG. 1. Tensor relative error (ERR) maps for the SVD, the J-QL (It), and the analytical tensor (An) diagonalization methods for the human brain t
measurements.
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FIG. 2. Tensor relative error (ERR) maps for the SVD, the J-QL (It), and the analytical tensor (An) diagonalization methods for the aqueous phantor

DISCUSSION APPENDIX

The results of this study demonstrate that an analytical dbeometric Interpretation of the Analytical Diagonalization
agnonalization approach is stable and accurate enough for mo

DT-MRI applications. Although the error for the analytical ap- Slt.h.e analytical dlagonahza_tmn ofthe a s_econd-o_rder p‘??'“‘"
. ) : . . efinite tensor may be described geometrically using a trilinee
proach is greater than either of the iterative techniques, tﬂe

; . . coordinate systeni@, 13, 15, 2k The trilinear coordinates for
amount of error detected in the images is much smaller thgh™ . . ; g R .
. : . . describing the tensor eigenvalues is illustrated in Fig. Al. Thi
the effects of measurement noise. In all imaging studies, in- . . . Y .
) . L . system consists of an equilateral triangle of unit latitude witt
cluding others not described in this study, the eigenvalue a . . . i .
he trace-weighted eigenvalues at the vertices. In this coordina

eigenvector images generated using all of the diagnonaliza- e . :
; . . . . . system any diffusion tensor can be described by the aspheris
tion techniques were visually identical. The analytical tech- . . i

) et . index, A (the distance from the centroid of the triang26)) and
nique will fail when the tensor has either degenerate or nof- S X . ; .
ositive eigenvalues. Consequently, it is critical to detect anh anglap, which is defined in Eq. [8]. Note that this system is
b g . d Y. ifferent from either the barycentric tensor shape diagram thz

mask these voxels as described under Background and Theor used previously to define tensor shagi® or the coordinate

In gen_eral_, iterative methods were developed for tensor (\%/stems described by Bahag). The perpendicular distance
agonalization because they were more accurate and stagle

than direct algebraic calculations. However, the main Co%Pposite of each side is defined in terms of the sorted positi
) ; X ) _@lgenvalues as

of these iterative approaches is compromised computatloneﬁ

speed.

As described previously, certain measures of tensor aniso- X = Ai/l1. [A1]
tropy such as the linear and planar tensor shape measures and
the cylindrical anisotropy index are normally written in terms
of the eigenvalues. By using direct algebraic diagonalization,
these anisotropic measures can now be expressed algebraica
in terms of the tensor element)j. The relationships for these
measures are described in the Appendix.

The improved speed of this direct algebraic diagonaliza-

tion will be useful for analyzing large DT-MRI data sets, T

such as those obtained for white matter tractography applica y
tions. Another application of this method is for error analy-
sis in DT-MRI. Currently, iterative statistical procedures such
as Monte Carlo and bootstrap techniq2s21—24)are used

to estimate the effects of measurement noise on DT-MRI de-
rived parameters, such as the trace values, anisotropy va
ues, and eigenvector directions. These statistical procedure
may be greatly accelerated by using analytical diagonaliza-
tion. Alternatively, since these measures can now be ex
pressed directly in terms of the tensor invariants and tenso
elements, the effects of measurement noise on the measur® = @9 ay = (Z,0)
can also be determined analytically. Consequently, noise ef-
fects can now be predicted without time-consuming iterativer|g. a1. lilustration of the trilinear coordinate system that is used to de-
techniques. scribe diagonalization of the tensor eigenvalues.
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Properties of the coordinate system include of RA and¢ as follows:
x3=y and X;+X+x3=1 [A2] Acyl = RA cos@) [A12]
Oq;=2/3; OM =1/3 fori =123, A3 sin(% —
=2/ =1/ [A3] CL=2 RASI(T)‘m [A13]
whereO is the triangle centroidy; are the triangle vertice$/;
are the edge bisectors. The two-dimensional Cartesian coordi- CP— 2RA sin(@) [A14]

natesx, y) of any pointP in the triangle can be expressed using sin (%)
straightforward geometry by the transformation,

Consequently, these measures can be computed without diag
X Yl =[1-X+%)/v3 1—x —X]. [A4] nalization.

The distanceOP is known as the aspherism indeX, which is

related to the relative anisotropy by ACKNOWLEDGMENTS
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where RA is given in terms of the first two principal invariant
as

3l
RA=[1- 22 [A6]
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