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In this paper a noniterative algorithm to be used for the ana-
lytical determination of the sorted eigenvalues and corresponding
orthonormalized eigenvectors obtained by diffusion tensor mag-
netic resonance imaging (DT-MRI) is described. The algorithm
uses the three invariants of the raw water spin self-diffusion tensor
represented by a 3 × 3 positive definite matrix and certain math
functions that do not require iteration. The implementation re-
quires a positive definite mask to preserve the physical meaning
of the eigenvalues. This algorithm can increase the speed of eigen-
value/eigenvector calculations by a factor of 5–40 over standard
iterative Jacobi or singular-value decomposition techniques.
This approach may accelerate the computation of eigenvalues,
eigenvalue-dependent metrics, and eigenvectors especially when
having high-resolution measurements with large numbers of slices
and large fields of view. C© 2001 Academic Press

Key Words: analytical; diffusion tensor; eigenvalues; eigenvec-
tors.
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INTRODUCTION

A diffusion tensor measurement may be obtained by apply
diffusion sensitizing gradient pulses along a minimum of
noncolinear gradient directions for a set diffusion time, grad
strength, and pulse separation (1–3). The relationship betwee
the measured diffusion tensorD in the scanner frame and th
local tissue frame is given by the matrix equation

DE = EΛ. [1]

In Eq. [1] the self-diffusion tensor eigenvalues are the diago
elements of the matrixΛ andE is an orthogonal rotation matri
whose columns are the eigenvectors,êi , of D. There are many
useful quantities that can be obtained from the self-diffusion
sor including the trace, measures of diffusion anisotropy, and
entation (4–6). For many of these calculations, the eigenvalu
and eigenvectors must be computed first. For example, in fi
tracking applications the accurate determination of the princ
eigenvector directions for a large volume is required (7–10).

The diffusion tensor matrix can be diagonalized using tra
tional methods of eigenvector–eigenvalue decomposition (11).
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These methods are usually iterative and, hence, time cons
ing, especially when performed using interpreted process
languages such as MATLAB or IDL on a voxel-by-voxel b
sis. The iterative schemes commonly used for symmetric ma
diagonalization include variations of the Jacobi method (11) or
singular-value decomposition (SVD)-based methods (11, 12).

In this paper, we examine an analytical method for calculat
eigenvalues, eigenvalue-dependent measures, and eigenv
of the diffusion tensor directly from the diffusion tensor el
ments. The efficiency and accuracy of this approach relativ
commonly used iterative methods are also investigated.

BACKGROUND AND THEORY

Diffusion Tensor Invariants

The Cartesian diffusion tensorD has three principal invari-
ants,{I1, I2, I3}, which are related to the eigenvalues,{λ}, and
defined by the characteristic equation

det(D−ΛU3×3) = (λ− λ1)(λ− λ2)(λ− λ3)

= λ3− λ2I1+ λI2− I3 = 0, [2]

whereU3×3 is the 3× 3 identity matrix. From this equation, th
three invariants are given by (4, 14)

I1 = Trace(D) = Dxx + Dyy+ Dzz= λ1+ λ2+ λ3 [3]

I2 = (DxxDyy+ DxxDzz+ DyyDzz)−
(
D2

xy+ D2
xz+ D2

yz

)
= λ1λ2+ λ1λ3+ λ2λ3 [4]

and

I3 = det(D)= DxxDyyDzz+ 2DxyDxzDyz

− (DzzD
2
xy+ DyyD2

xz+ DxxD2
yz

) = λ1λ2λ3. [5]

Rotationally Invariant Measures of Diffusion Anisotropy

The three principal tensor invariants can be used to exp
several anisotropy measures such as relative anisotropy (4, 5)
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and fractional anisotropy (2). However, for other measures
tensor anisotropy there is no obvious expression for direct
lytical calculation from either the diffusion tensor or its inva
ants. For example, planar and spherical shape measures (6) and
the cylindrical anisotropy index (8) are expressed in terms of th
sorted eigenvalues. The analytical solutions for these meas
in terms of either the tensor elements or the three principal te
rotational invariants, have not been reported. Consequently
diffusion tensor must be fully diagonalized prior to calculat
these measures. As pointed out in the Introduction, the diago
ization can take significant amounts of time and mask the de
dency between the measures and the original diffusion ten

The Analytical Diagonalization Algorithm

The analytical diagonalization solution presented here is
cific to the positive-definite and symmetric Cartesian tens
that are commonly encountered in many applications includ
diffusion, crystallography, chemical shielding, and continu
mechanics. Descriptions of analytical eigenvalue calculat
have been previously documented (11, 13, 15). By using the
three principal invariants{I1, I2, I3} of D defined above, the fol
lowing steps lead to the diagonalization ofD. In addition, we
will obtain an orthonormal eigenvector set,E, that solves Eq. [1]

Determination of the eigenvalues.The following rotation-
ally invariant variables are defined in terms of{I1, I2, I3}:

v = (I1/3)2− I2/3 [6]

and

s= (I1/3)3− I1I2/6+ I3/2. [7]

Since for real eigenvalues,v > 0 ands2 < v3, we define

φ =
acos

(
s
v

√
1
v

)
3

. [8]

It should be noted that bothv ands variables are related to th
second and third rotational invariants of the diffusion deviato
tensor,Dan, with zero trace or first invariant (4):

Dan= D− I1/3U3×3. [9]

Thus, we can interpretv ands as variance and skewness me
sures ofDan respectively,

v = 1
6 Trace

(
D2

an

) = Variance(λ) = I2(Dan)/3 [10]

and

s = 1
6 Trace

(
D3

an

) = Skewness(λ) = I3(Dan)/2
= det(Dan)/2. [11]
ET AL.
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The sorted eigenvalues (λ1 > λ2 > λ3) may now be expressed

as

λ1 = I1/3+ 2
√
v cos(φ) [12]

λ2 = I1/3− 2
√
v cos(π/3+ φ) [13]

and

λ3 = I1/3− 2
√
v cos(π/3− φ). [14]

Note that the eigenvalues need no further sorting due to
cosine function and the fact that 0≤ φ ≤ π/3 is assured for
a positive-definite DT matrix. The third eigenvalue can also
obtained using the trace invariance property,λ3 = I1−λ1−λ2.
A discussion of the geometric interpretation of this analytic
diagonalization and application to tensor anisotropy is given
the Appendix.

Determination of the eigenvectors.After the sorted
eigenvalues have been computed, theith eigenvector,
êi = [eix eiy eiz]T, may be calculated by solving the linear sy
tem of equations,Dêi = λi êi , for the ratioeix : eiy : eiz. More-
over, the normalization condition,êT

i êi = 1, can be enforced to
determinêei (16). Note that since−êi is also a solution to the
eigenvector problemD(−êi ) = λ`(−êi ), a sign ambiguity in the
vector direction is unavoidable.

The calculation of the orthonormalized eigenvectors proce
as follows: for theith eigenvalue, define the variables

Ai = Dxx − λi ; Bi = Dyy− λi ; Ci = Dzz− λi [15]

eix = (DxyDyz− Bi Dxz)(DxzDyz− Ci Dx) [16]

eiy = (DxzDyz− Ci Dxy)(DxzDxy− Ai Dyz) [17]

and

eiz = (DxyDyz− Bi Dxz)(DxzDxy− Ai Dyz). [18]

The normalized eigenvector corresponding toλi is

êi = ei√
eT

i ei

. [19]

This procedure may be repeated as desired fori = 1, 2, or 3 to
obtain the orthonormalized set of eigenvectors that corresp
to the major, medium, and minor eigenvalues. Note that the th
eigenvector may be obtained more efficiently by the cross pr
uct between the other two orthonormal eigenvectors,ê1 andê2

ê3 =
[
e1ye2z− e2ye1z e1ze2x − e1xe2z e1xe2y − e1ye2x

]T
.

[20]
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EIGENVALUES AND EIG

Implementation and algorithm sensitivity issues.The alge-
braic algorithm presented above can easily be implemente
an entire image volume array. The use of standard math lib
functions (cos, acos, sqrt, etc.) is the only requirement. The
no need to sort the computed eigenvalues as is generally
when using traditional iterative methods. It is highly advisa
to enforce a nonnegative-definite real eigenvalue mask be
obtaining the eigenvectors. Prior to eigenvalue determinat
the positive-definite mask can be selected to include all vo
that satisfy the necessary and sufficient conditions that as
the convexity of the diffusion ellipsoid (17):

I3 > 0, and
(
Dii andDii D j j − D2

i j

) ≥ 0

for i, j = x, y, orz. [21]

Diffusion measurements usually have some random noise
makes the tissue water diffusivities unique and rarely equal, e
for a water phantom, as will be demonstrated experimenta
Additionally, the enforcement of this positive-definite mask a
sures that

(λ1, λ2, andλ3) > 0, [22]

which will reduce the chance of division by 0 in Eq. [19] abov
The mask will remove air and very-low-signal regions. No
also that this mask will not remove a voxel with degener
eigenvalues. This case corresponds toν = 0 in Eq. [10] and is
extremely rare even at the highest available SNR on an isotr
water phantom.

MATERIALS AND METHODS

DT-MRI Experiments

Diffusion tensor image measurements were obtained fr
a normal human subject using a single-shot spin-echo
pared EPI pulse sequence on a 1.5-T SIGNA MRI scan
(General Electric) with NV/CVi gradients (maximum gradie
amplitude= 4 G/cm). Informed consent was obtained as per
guidelines of the Institutional Review Board. Single axial slic
with image matrix= 128× 128 were acquired with FOV=
24 cm. The total number of images,Nt = 55, was partitioned
into reference images ofNref = 7 (b = 0), andNe = 6 encoding
directions, each averagedNd = 8 times (Nt = Nref+NeNd). The
echo time, TE; repetition time, TR; diffusion pulse duration,δ;
and separation,1, are TE/TR/δ/1 = 94/2000/23/29 ms, with
slice thickness= 4 mm. The diffusion weightingb-factor is
b = 1341 s mm−2. The diffusion tensor encoding scheme us
six noncolinear directions of the scaled icosahedron (Icos
(18, 19) on a unit sphere (i.e.,{Gx,Gy,Gz} = Gmax/

√
τ 2+ 1×

{[τ 1 0], [τ −1 0], [0 1 τ ], [0 τ −1], [1 τ 0], and [−1 0 τ ]},
whereτ = (

√
5− 1)/2 andGmax= 4 G/cm.
Water phantom measurements were also acquired using
icosahedral encoding scheme, at a higher signal-to-noise ra
NVECTORS IN DT-MRI 43
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to examine the sensitivity of the eigenvector and eigenvalue
lutions as provided by the analytical approach. The total n
ber of images,Nt= 134, was partitioned into reference imag
of Nref= 8, with encoding directions,Ne= 6, each average
Nd = 21 times. The echo time, TE; repetition time, TR; diff
sion pulse duration,δ; and separation,1, are TE/TR/δ/1 =
72/5500/16/23 ms, with slice thickness= 5 mm. The gradien
strength,G, was tuned to achieve a diffusionb-factor of approx-
imately 500 s mm−2.

For both the brain and water imaging studies, the eigen
ues and eigenvectors were calculated using three diagon
tion methods: (1) the conventional iterative Jacobi-QL (J-Q
method (16), (2) singular-value decomposition, and (3) the
alytical method described in Eqs. [12]–[14] and [15]–[18]. A
diagonalization methods used the same positive-definite m
defined by Eqs. [21].

RESULTS

Computational Efficiency

The analytical algorithm was implemented on a UNIX wo
station (Sun4-Sol2@360 MHz Sparcv9 processor) in the C
gramming language. The results given by the analytical a
rithm Eqs. [12]–[20] were compared with those obtained us
the eigen decomposition routine (qr.c, jacobi.c, and svdcmp.
“Numerical Recipes in C” (11). The (qr.c) routine was optimize
for symmetric matrices. The analytical code gave a rough c
putational advantage factor of 5 over the qr.c algorithm (8 vs 4
for a total number ofN= 1,000,000 of randomly generate
positive definite 3× 3 matrices.

The analytical algorithm was also implemented us
MATLAB-r11 (Mathworks, Inc., Natick, MA, version 5.3) an
IDL (Research Systems, Inc., Boulder, CO, version 5.3)
guages on the same workstation for a 128× 128× 6 diffu-
sion array. For MATLAB with double-precision computatio
the proposed analytical approach provided the positive-defi
mask array, three eigenvalue and eigenvector arrays in less
0.4 s versus 15.8 s using the iterative voxel-by-voxel buil
routine, eig.m, and 12 s for the svd.m routine. For IDL, the
sults were 0.5 s using the analytical algorithm versus 2.8 s u
the eigenql.pro code. Hence, the computation time advan
factor on the whole image array is approximately 30–40 us
MATLAB, and 6 using IDL with the quoted routines.

Brain Water Self-Diffusion Imaging

Maps of the relative eigenvalue differences

|λi − λa|/λi [23]

between the analytical and the iterative (J-QL method) calc
tions were computed (not shown). These maps showed tha

the
tio,
eigenvalue calculation does not appear to depend significantly
on the method of computation. One interesting observation
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is that the relative difference is lowest for regions of high
anisotropic white matter. However, for more isotropic regio
the largest relative difference is on the order of 5×10−15, which
is negligible for practical considerations. This difference m
be attributed to the lower stability of the eigenvalue deco
position for less anisotropic regions, such as in gray ma
(GM) and the cerebrospinal fluid (CSF). In white matter (WM
the noise/sorting bias forλ1 is less severe than in isotropi
regions.

The analytical and iterative calculations of the eigenvect
were also compared. A map of the absolute dot products,|êT

a êi |,
was identical to the binary positive definite mask, which i
dicates that the analytical approach provides the same se
directions as the iterative approach.

Another way to evaluate the accuracy of the diagonalizatio
to compute the difference between the original measured te
data and the tensor constructed from the computed eigenve
and eigenvalues. This approach may be used to determine w
method is most accurate for these calculations. A measure o
error norm (ERR) is defined as

ERR=
√

I4(EΛET − DTrue)√
I4(DTrue)

, [24]

whereDTrue is the measured diffusion tensor,E andΛ are the
estimated eigenvector and eigenvalue matrices,I4 is a fourth
invariant (14),

I4 = Trace(D2) = D2
xx + D2

yy+ D2
zz+ 2

(
D2

xy+ D2
xz+ D2

yz

)
= I 2

1 − 2I2. [25]

Figure 1 maps this error quantity for the SVD, J-QL, and analy
cal calculation methods. The error for the analytical approach
pears lowest for regions with high anisotropy (white matter). T
ranges for these maps were scaled for display. The actual m
imum error was roughly 2.0× 10−15, 3.0× 10−15, and 2.5 ×
10−9, for the iterative SVD, the J-QL, and the analytical metho

respectively. Note that the analytical error occurred for a singleencountering a degenerate case is very small in the presence of

noise.
voxel at this level. This voxel corresponded to a nearly isotropic
FIG. 1. Tensor relative error (ERR) maps for the SVD, the J-QL (It), a
measurements.
ET AL.
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voxel in the CSF and corresponded to the largest ERR v
for all methods. All other image voxels had errors at least
orders of magnitude lower. In general, the SVD method
pears most accurate, followed by the J-QL method, and the
alytical method was the least accurate. It should be noted
both iterative techniques (SVD and J-QL) use a converge
criterion similar to Eq. (24). Despite a difference in the cal
lated errors on the order of four to six orders of magnitu
the overall relative error for all methods is negligible for m
applications.

Aqueous Phantom Diffusion Tensor Imaging

The brain imaging results demonstrated that error assoc
with tensor feature estimates is greatest in primarily isotro
regions. Therefore, an aqueous solution phantom, which
isotropic diffusion properties, should also demonstrate sig
cant error differences between the techniques. The error me
in Eq. [24] was applied to calculations of eigenvalues and eig
vectors for the water phantom imaging studies. The results
shown in Fig. 2. The displayed gray levels have been scaled
true maximum values are roughly 1.5×10−16, 2.5×10−16, and
10−8, for the SVD, J-QL, and analytical techniques respectiv
Again, the SVD appears most accurate, although the relativ
ror for all the calculation methods is practically negligible. T
analytical technique depicts a centered dark horizontal strip
the error map, which was puzzling at first. Closer investiga
of the image data showed a low amplitude zipper artifact in
region that may have yielded a small, yet artificial increas
the anisotropy.

Relative eigenvalue difference (Eq. [23]) and eigenvector
product maps were also generated (not shown), which c
pared the eigenvalue and eigenvector results for the J-QL
the Analytical methods. The maximum relative eigenvalue
ference was on the order of 10−12. The absolute eigenvector d
product was also unity everywhere within the phantom. N
that for the ideal degenerate (isotropic) diffusion tensor,
orthonormal vector is a valid solution. The stability of the
gorithm is explained in part by the fact that the likelihood
nd the analytical tensor (An) diagonalization methods for the human brain tensor
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FIG. 2. Tensor relative error (ERR) maps for the SVD, the J-QL (It), a tom.
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DISCUSSION

The results of this study demonstrate that an analytica
agnonalization approach is stable and accurate enough for
DT-MRI applications. Although the error for the analytical a
proach is greater than either of the iterative techniques,
amount of error detected in the images is much smaller t
the effects of measurement noise. In all imaging studies,
cluding others not described in this study, the eigenvalue
eigenvector images generated using all of the diagnona
tion techniques were visually identical. The analytical te
nique will fail when the tensor has either degenerate or n
positive eigenvalues. Consequently, it is critical to detect
mask these voxels as described under Background and Th
In general, iterative methods were developed for tensor
agonalization because they were more accurate and s
than direct algebraic calculations. However, the main c
of these iterative approaches is compromised computati
speed.

As described previously, certain measures of tensor an
tropy such as the linear and planar tensor shape measure
the cylindrical anisotropy index are normally written in term
of the eigenvalues. By using direct algebraic diagonalizat
these anisotropic measures can now be expressed algebra
in terms of the tensor elements (20). The relationships for thes
measures are described in the Appendix.

The improved speed of this direct algebraic diagonali
tion will be useful for analyzing large DT-MRI data set
such as those obtained for white matter tractography app
tions. Another application of this method is for error ana
sis in DT-MRI. Currently, iterative statistical procedures su
as Monte Carlo and bootstrap techniques(2, 21–24)are used
to estimate the effects of measurement noise on DT-MRI
rived parameters, such as the trace values, anisotropy
ues, and eigenvector directions. These statistical proced
may be greatly accelerated by using analytical diagonal
tion. Alternatively, since these measures can now be
pressed directly in terms of the tensor invariants and ten
elements, the effects of measurement noise on the mea
can also be determined analytically. Consequently, noise
cts can now be predicted without time-consuming iterat
chniques.
nd the analytical tensor (An) diagonalization methods for the aqueous phan
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APPENDIX

Geometric Interpretation of the Analytical Diagonalization

The analytical diagonalization of the a second-order posit
definite tensor may be described geometrically using a trilin
coordinate system (12, 13, 15, 25). The trilinear coordinates for
describing the tensor eigenvalues is illustrated in Fig. A1. T
system consists of an equilateral triangle of unit latitude w
the trace-weighted eigenvalues at the vertices. In this coordi
system any diffusion tensor can be described by the asphe
index,A (the distance from the centroid of the triangle (26)) and
the angleφ, which is defined in Eq. [8]. Note that this system
different from either the barycentric tensor shape diagram
we used previously to define tensor shape (27) or the coordinate
systems described by Bahn (28). The perpendicular distanc
opposite of each side is defined in terms of the sorted posi
eigenvalues as

xi = λi/I1. [A1]
iveFIG. A1. Illustration of the trilinear coordinate system that is used to de-
scribe diagonalization of the tensor eigenvalues.
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Properties of the coordinate system include

x3 = y and x1+ x2+ x3 = 1 [A2]

Oαi = 2/3; O Mi = 1/3 for i = 1, 2, 3, [A3]

whereO is the triangle centroid,αi are the triangle vertices,Mi

are the edge bisectors. The two-dimensional Cartesian co
nates (x, y) of any pointP in the triangle can be expressed usi
straightforward geometry by the transformation,

[x y] = [(1− x1+ x2)/
√

3 1− x1− x2]. [A4]

The distanceOP is known as the aspherism index,A, which is
related to the relative anisotropy by

A = OP =
√

[(x − 1/
√

3)2+ (y− 1/3)2] = 2/3 RA, [A5]

where RA is given in terms of the first two principal invarian
as

RA =
√

1− 3I2

I1
2 . [A6]

The graph can also be used to provide a geometric deriva
of the eigenvalues and anisotropy indices. By using the angφ
(Fig. A1), we note that

xi = O Mi + Acos(φ). [A7]

Similarly, in terms ofI1, RA, andφ, we can express the eigen
values in terms of the vector equation

λ1

λ2

λ3

 = I1

3

1+ 2 RA


cosφ

−cos
(
π
3 + φ

)
−cos

(
π
3 − φ

)

 . [A8]

Algebraic Expressions of Anisotropy Measures

Several anisotropy measures of the diffusion tensor, suc
the cylindrical anisotropy index

Acyl = [λ1− (λ2+ λ3)/2]/I1 [A9]

and the linear and planar shape measures

CL = (λ1− λ2)/I1 [A10]

CP= 2(λ2− λ3)/I1, [A11]

are generally expressed in terms of the eigenvalues, which

quired diagonalization. The set of equations in [A8] can now
used to algebraically express these anisotropy measures in t
ET AL.
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of RA andφ as follows:

Acyl = RA cos(φ) [A12]

CL = 2 RA
sin
(
π
3 − φ

)
sin
(
π
3

) [A13]

CP= 2 RA
sin(φ)

sin
(
π
3

) . [A14]

Consequently, these measures can be computed without di
nalization.

ACKNOWLEDGMENTS

We thank Dr. R. I. Shrager for his critical reading of the manuscript and
constructive comments made on the eigenvector sensitivity to degenerative c
and on round-off errors, and for suggesting the tensor norm. K. M. Hasan tha
J. A. Roberts for programming assistance, and Drs. G. Gullberg, G. A. Willia
and C. Goodrich for encouragement. The authors also thank Sean W
and Marci A. Harris for editorial assistance. This work is funded by NIH Gran
R01 MH62015 and P30 CA42014.

REFERENCES

1. P. J. Basser, J. Mattiello, and D. Le Bihan, Estimation of the effective s
diffusion tensor from the NMR spin echo,J. Magn. Reson. B103,247–254
(1994).

2. C. Pierpaoli and P. J. Basser, Toward a quantitative assessment of diffu
anisotropy,Magn. Reson. Med.36,893–906 (1996).

3. P. J. Basser and C. Pierpaoli, A simplified method to measure the diffus
tensor from seven MR images,Magn. Reson. Med.39,928–934 (1998).

4. P. J. Basser, New histological and physiological stains derived fr
diffusion-tensor MR images,Ann. N.Y. Acad. Sci. 820,123–138 (1997).

5. T. E. Conturo, R. C. McKinstry, E. Akbudak, and B. H. Robinson, Encodi
of anisotropic diffusion with tetrahedral gradients: A general mathemati
diffusion formalism and experimental results,Magn. Reson. Med. 35,399–
412 (1996).

6. C. F. Westin, S. Peled, H. Gudbjarsson, R. Kikinis, and F. A. Jole
Geometrical diffusion measures for MRI from tensor basis analysis, A
stracts of the International Society of Magnetic Resonance in Medicine,
Annual Meeting, p. 1742, Vancouver (1997).

7. P. J. Basser, S. Pajevic, C. Pierpaoli, J. Duda, and A. Aldroubi, In vivo fib
tractogrophy using diffusion DT-MRI,Magn. Reson. Med. 44, 625–632
(2000).

8. C. Poupon, C. A. Clark, V. Frouin, J. Regis, I. Bloch, D. Le Bihan, an
J. Mangin, Regularization of diffusion-based direction maps for the track
of brain white matter fascicles,Neuroimage12,184–195 (2000).

9. T. E. Conturo, N. F. Lori, T. S. Cull,et al., Tracking neuronal fiber pathways
in the living human brain,Proc. Natl. Acad. Sci.96,10,422–10,427 (1999).

10. S. Mori, W. E. Kaufmann, G. D. Pearlson, B. J. Crain, B. Stieltje
M. Solaiyappan, and P. C. van Zijl, In vivo visualization of human ne
ral pathways by magnetic resonance imaging,Ann Neurol.47, 412–414
(2000).

11. W. H. Press, B. P. Flannery, F. A. Teukolsky, and W. T. Vetterling, “Numeric
Recipes in C,” Cambridge Univ. Press, Cambridge (1997).
be
erms
12. E. R. Malinowski, “Factor Analysis in Chemistry,” p. 350, Wiley, New York

(1991).



E

2

li

–

a

r-
n
t

9

n

g
ic

uver

he
sion

sion
ional
90,

T-
ag-
00).

ver,

uers
.

da,
rain,

ag-
EIGENVALUES AND EIG

13. E. W. Weisstein, “CRC Concise Encyclopedia of Mathematics,” pp. 36
365, 884, and 1859–1860, CRC Press, Boca Raton, FL (1999).

14. A. I. Borisenko and I. E. Tarapov, “Vector and Tensor Analysis with App
cations,” pp. 121–122, Dover, New York (1968).

15. D. M. Burton, “History of Mathematics: An Introduction,” 3rd ed., pp. 286
300, McGraw-Hill, New York (1997).

16. K. R. Symon, “Mechanics,” 2nd ed., pp. 403–425, Addison-Wesley, Re
ing, MA (1960).

17. R. E. Bellman, “Introduction to Matrix Analysis,” p. 74, McGraw-Hill,
New York (1960).

18. R. Muthupallai, C. A. Holder, A. W. Song, and W. T. Dixon, Navigato
aided, multishot EPI diffusion images of brain with complete orientation a
anisotropic information, Abstracts of the International Society of Magne
Resonance in Medicine, 7th Annual Meeting, p. 1825, Philadelphia (19

19. K. M. Hasan, D. L. Parker, and A. L. Alexander. Comparison of gradie
encoding schemes for diffusion-tensor imaging.J. Magn. Reson. Imaging
13,769–780 (2001).

20. A. M. Ulug and P. C. van Zijl, Orientation-independent diffusion imagin
without tensor diagonalization: Anisotropy definitions based on phys
attributes of the diffusion ellipsoid,J. Magn. Reson. Imaging9, 804–813
(1999).
21. P. J. Basser, Quantifying errors in fiber-tract direction and diffusion tens
field maps resulting from MR noise, Abstracts of the International Society
NVECTORS IN DT-MRI 47

–

-

d-

d
ic
9).

t

al

Magnetic Resonance in Medicine, 5th Annual Meeting, p. 1740, Vanco
(1997).

22. M. E. Bastin, P. A. Armitage, and I. Marshall, A theoretical study of t
effect of experimental noise on the measurement of anisotropy in diffu
imaging,Magn. Reson. Imaging16,773–778 (1998).

23. S. Pajevic and P. J. Basser, Non-parametric statistical analysis of diffu
tensor MRI data using the bootstrap method, Abstracts of the Internat
Society of Magnetic Resonance in Medicine, 7th Annual Meeting, p. 17
Philadelphia (1999).

24. K. M. Hasan, D. L. Parker, and A. L. Alexander. Bootstrap analysis of D
MRI encoding techniques, Abstracts of the International Society of M
netic Resonance in Medicine, 8th Annual Meeting, p. 789, Denver (20

25. D. E. Sands, “Vectors and Tensors in Crystallography,” pp. 138–139, Do
New York (1982).

26. D. Weigel, T. Beguesmi, P. Garnier, and J. F. Berar, Evolution des tens
de dilatation thermique en fonction de la temperature,J. Solid State Chem
23,241–251 (1978).

27. A. L. Alexander, K. M. Hasan, G. Kindlmann, D. L. Parker, and J. S. Tsuru
A geometric analysis of diffusion tensor measurements of the human b
Magn. Reson. Med.44,283–291 (2000).

28. M. M. Bahn, Invariant and orthonormal scalar measures derived from m

or
of

netic resonance diffusion tensor imaging,J. Magn. Reson.141, 68–77
(1999), doi: 10.1006/jmre.1999.1875.


	INTRODUCTION
	BACKGROUND AND THEORY
	MATERIALS AND METHODS
	RESULTS
	FIG. 1.
	FIG. 2.

	DISCUSSION
	APPENDIX
	FIG. A1.

	ACKNOWLEDGMENTS
	REFERENCES

